Selection of peptides that functionally replace a zinc finger in the Sp1 transcription factor by using a yeast combinatorial library.
نویسندگان
چکیده
We have developed a strategy for the identification of peptides able to functionally replace a zinc finger domain in a transcription factor. This strategy could have important ramifications for basic research on gene regulation and for the development of therapeutic agents. In this study in yeast, we expressed chimeric proteins that included a random peptide combinatorial library in association with two zinc finger domains and a transactivating domain. The library was screened for chimeric proteins capable of activating transcription from a target sequence in the upstream regulatory regions of selectable or reporter genes. In a screen of approximately 1.5 x 10(7) transformants we identified 30 chimeric proteins that exhibited transcriptional activation, some of which were able to discriminate between wild-type and mutant DNA targets. Chimeric library proteins expressed as glutathione S-transferase fusions bound to double-stranded oligonucleotides containing the target sequence, suggesting that the chimeras bind directly to DNA. Surprisingly, none of the peptides identified resembled a zinc finger or other well-known transcription factor DNA binding domain.
منابع مشابه
Engineering of GAL1 promoter-driven expression system with artificial transcription factors.
We isolated and characterized artificial transcription factors (ATFs) that functionally activate GAL1 promoter in yeast. These ATFs transformed the yeast galactose-dependent GAL1 promoter system into a galactose-independent one. The ATFs were identified by screening a combinatorial library of zinc finger-containing transcription factors for components that activated the transcription of a repor...
متن کاملNatural and artificial zinc finger proteins
Zinc finger proteins acquire DNA-binding ability by Zn (II) complexation. In the zinc finger domain of the Cys2His2 type, each finger is approximately 30 amino acid residues long and consists of a simple ββα–fold stabilized by chelation of a zinc ion with the conserved Cys2His2 residues. A zinc finger motif of Cys2His2 offers an attractive framework for the design of a novel DNA-binding protein...
متن کاملChemically synthesized zinc finger molecules as nano-addressable probes for double-stranded DNAs
Our experiments describe an alternative method of dsDNA recognition using zinc finger (ZF) molecules which bind DNA specifically and with high affinity. Our aim was to develop zinc finger probes which are able to bind to dsDNA molecules at predetermined sites. In our basic approach we used pairs of complementary oligonucleotides to form dsDNAs, containing one of the three SP1-transcription fact...
متن کاملCommon and diverged functions of the Drosophila gene pair D-Sp1 and buttonhead
The Drosophila gene buttonhead (btd) is required for the formation of the mandibular, the intercalary and the antennal head segments of the embryo. The btd protein (BTD) is functionally and structurally related to the human C(2)H(2) zinc finger transcription factor Sp1. A second Sp1-like Drosophila gene, termed Drosophila Sp1 (D-Sp1), had been identified on the basis of a partial sequence showi...
متن کاملEgr-1 and Sp1 interact functionally with the 5-lipoxygenase promoter and its naturally occurring mutants.
5-Lipoxygenase (5-LO), an enzyme essential for the formation of leukotrienes, is functionally modulated by a number of mechanisms, including transcriptional controls. The 5-LO promoter has a unique G+C-rich sequence, located between 176 and 147 base pairs upstream of the ATG translation start site, which contains five tandem Sp1 (a zinc-finger transcription factor) consensus binding sites overl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 94 25 شماره
صفحات -
تاریخ انتشار 1997